Course description

This is one of my favorites!

This course is a complete immersion into the fundamentals of computer graphics! You'll learn how a software 3D engine works under the hood, and use the C programming language to write a complete software rasterizer from scratch; including textures, camera, clipping, and loading complex OBJ files. Pixel per pixel, triangle per triangle, mesh per mesh.

3d programming from scratch

We'll review all the beautiful math that makes 3D computer graphics possible as we tackle all concepts from first principles. We'll also write a comprehensive software renderer that can display complex 3D objects on the screen without the help of any graphics API. No GPU, no OpenGL, no DirectX! Just a C compiler and a little bit of linear algebra is all we need to create a final project that is nothing short of amazing!

The tools you'll need

We'll simply use the command-line, a code editor, and a C compiler. All these tools are multi-platform, so you'll be able to code along on either Windows, macOS, or Linux!

operating system

Also, make sure you have pen and paper ready for the lectures. This course will probably be a little bit different than other programming courses you took before. We will take our sweet time and make sure we understand every formula we find along the way!

game math

Is this course for you?

3d programming tutorial

This is a self-contained course with no prerequisites. However, you will probably get the most out of it if you already know the basics of coding (if-else, loops, functions).

If you never programmed in C before, don't worry! Many successful students come from different languages like Java, Python, JavaScript, Swift, and others. We'll learn to work with the C language together.

About the instructor

gustavo pezzi

Gustavo Pezzi is a university lecturer in London, UK. He has won multiple education awards as a teacher and is also the founder of pikuma.com.

Gustavo teaches fundamentals of computer science and mathematics; his academic path includes institutions such as Pittsburg State University, City University of London, and University of Oxford.

teaching certification
higher education academy
pgclt teaching certification
bpp university award

Course content

38 hours total length 29 Chapters Last updated April 2024
  • Motivations & Learning Outcomes
  • How to Take This Course
  • Configuring Dependencies
  • Project Folder Structure
  • Configuring a Makfile
  • Compiling on Linux
  • Compiling on macOS
  • Configuring Visual Studio on Windows
  • Creating an SDL Window
  • Declaring a Color Buffer
  • Allocating and Freeing Memory
  • Quiz: Memory Allocation
  • SDL Texture
  • Fullscreen Window
  • Exercise: Drawing a Background
  • Drawing Rectangles
  • Quiz: Color Buffer
  • Defining Header Files
  • Quiz: Header Files
  • A Function to Draw Pixels
  • Vectors
  • Declaring a Vector Type
  • Declaring Structs
  • Array of Vector Points
  • Quiz: Vectors and Points
  • Orthographic Projection
  • Isometric Projection
  • Perspective Projection
  • Implementing the Perspective Divide
  • Coordinate System Handedness
  • Quiz: Perspective Projection
  • Transforming Vectors
  • Review of Sine, Cosine, and Tangent
  • Quiz: Trigonometric Functions
  • Rotating Vectors
  • Proof of Angle Sine Addition
  • Proof of Angle Cosine Addition
  • Quiz: Rotating Vectors
  • Fixing our Game Loop Timestep
  • Using a Delay Function
  • Constant Framerate and Variable Delta Time
  • 3D Triangles and Meshes
  • Vertices and Triangle Faces
  • Triangle Edges
  • Quiz: Joystick Input
  • Line Equation
  • DDA Line Drawing Algorithm
  • Do We Need Bresenham Lines?
  • Coding a Function to Draw Lines
  • Dynamic Arrays in C
  • Dynamic Mesh Vertices and Faces
  • Defining the Project Playfield Graphics
  • OBJ File Vertices and Faces
  • Exercise: Loading OBJ File Content
  • OBJ File Triangles and Quads
  • Introduction to Back-face Culling
  • Vector Magnitude
  • Vector Addition
  • Vector Subtraction
  • Vector Scaling
  • Vector Cross Product
  • Finding the Triangle Normal Vector
  • Dot Product
  • Implementing the Back-face Algorithm
  • Vector Normalization
  • Quiz: Vector Operations
  • Triangle Fill
  • Flat-Top & Flat-Bottom Technique
  • Flat-Top Triangle Code
  • Flat-Bottom Triangle Code
  • Avoiding Division by Zero
  • Exercise: Different Rendering Methods
  • Solid Color Triangle Faces
  • Painter's Algorithm
  • Exercise: Sorting Faces by Depth
  • A Simple Sorting Function
  • Matrices Review
  • Matrix Operations
  • Matrix Multiplication
  • Exercise: Matrix Multiplication
  • 2D Rotation Matrix
  • 3D Scale Matrix
  • 3D Translation Matrix
  • 3D Rotation Matrices
  • The World Matrix
  • Order of Matrix Transformations
  • Quiz: Matrix Transformations
  • Translation is Not a Linear Transformation
  • Defining a Projetion Matrix
  • Populating the Perspective Projection Matrix
  • Exercise: Projecting Negative Z Values
  • Projection in OpenGL & DirectX
  • Row-Major and Column-Major Order
  • Flat Shaded Triangles
  • Coding Flat Shading and Light
  • Smooth Shading
  • Gouraud Shading & Phong Shading
  • Representing Textures in Memory
  • Textured Triangles
  • Textured Flat-Top Triangle
  • Textured Flat-Bottom Triangle
  • Barycentric Coordinates
  • Barycentric Weights (α, β, γ)
  • Coding Textured Triangles
  • Quiz: Texture Mapping
  • Perspective Correct Interpolation
  • What Does "Affine" Mean?
  • 3D UV Coordinates
  • Decoding PNG Files
  • Loading PNG File Content
  • Freeing PNG Textures from Memory
  • Quiz: PNG Files
  • Loading OBJ Textures Attributes
  • Preventing Texture Buffer Overflow
  • Rasterization Rules
  • Visualizing Textured OBJ Files
  • Implementing a Z-Buffer
  • Exercise: Z-Buffer for Flat-Shaded Triangles
  • Z-Buffer for Flat-Shaded Triangles
  • Reviewing Dynamic Memory Allocation
  • Camera Space
  • LookAt Camera Model
  • LookAt Camera Transformations
  • Implementing a Variable Delta Time
  • Coding a Simple FPS Camera Movement
  • Quiz: Camera Transformations
  • Frustum Clipping
  • Frustum Planes
  • Exercise: Frustum Planes and Normals
  • Computing Points Inside and Outside Planes
  • Intersection Between Lines and Planes
  • Clipping Polygon Against a Plane
  • Coding the Function to Clip Polygons Against Planes
  • Visualizing Clipped Triangles
  • Horizontal and Vertical FOV
  • Clipping Texture UV Coordinates
  • Clipping Space
  • Quiz: 3D Clipping
  • Deciding What Not to Render
  • Working with Static Variables
  • Refactoring SDL Global Variables
  • Refactoring Light Code
  • Simulating Low-Resolution Display with SDL
  • Exercise: Camera Pitch Rotation
  • Implementing Camera Pitch Rotation
  • Declaring Multiple Meshes
  • Coding Multiple Meshes
  • Coding Multiple Textures
  • Finishing our Code
  • Bonus Lecture: Handedness & Orientation
  • Bonus Lecture: Dedicated Graphics Cards
  • Bonus Lecture: Modern Graphics APIs and Shaders
  • Modern 3D Hardware Techniques
  • Moving Forward

How is this course different?

This course is not just a simple tutorial on how to use an existing graphics library or how to glue OpenGL or Vulkan code together. This course focus on the foundation of 3D graphics and provides a careful review of the math that underpins these concepts.

3d software renderer

If you want to understand how computers display 3D objects on the screen and also learn some of the techniques used in the development of retro 3D games, then buckle up! This is going to be a 35-hour journey of pure nerd fun!

73% of our students come back for another course

We don't offer discounts on our courses. Ever.

What students are saying

4.98
5 star
98.5%
4 star
1.5%
3 star
0.0%
2 star
0.0%
1 star
0.0%
Alexandre Canova
Alexandre Canova
"Exceptional 3D Software Renderer Course by Gustavo! I recently completed Gustavo's 3D Software Renderer course, my fourth with him, following the ECS Game Engine, Physics Engine, and Raycasting Engine courses. As always, Gustavo's talent for simplifying complex topics shone through, making intricate concepts accessible and engaging. Coding my own version in C++ alongside the lessons was both challenging and rewarding. An added bonus is how the knowledge from each course supports and enhances the others, though it’s not a requirement. I highly recommend this course to anyone serious about advancing their 3D rendering skills."
02 Jun 2024
"This course made me love math and graphics!

When I first saw this course description, I figured it would be a fun side project that would help me make a voxel game. Little did I know, this course would actually open my eyes to the wonderful world of computer graphics and the beauty of math.

Gustavo has a knack for presenting information in a super approachable way that leaves you feeling like you truly own the knowledge after you finish watching the video (and either implementing it or working out the math yourself of course).

Thanks to this course, I've really come to appreciate how elegant math can be and how cool it is when it's applied to programming. It's hard to express how awesome it is to go from drawing 2D rectangles to whole 3D models that rotate and move around your screen, knowing that you actually understand everything that's going on in the whole process.

Working through this course has made me seriously consider pursuing a career in graphics. I can't recommend it enough. It's such a fun and educational experience and whether you end up just creating a little side project or sparking a new interest, you won't regret it.

Seriously, just buy it!"
26 May 2024
Rajesh Pillai
"Amazing course! This is absolutely amazing course and covers all the needed fundamentals and math needed for effective 3D programming and more."
18 May 2024
Geoff Banner
"Scratch 3D Graphics! Very good to this point (up to 'transformations') ..have had a fair amount of C/C++ exposure/practice but appreciate the re-iteration of some C code techniques such as structs, etc."
16 May 2024
"A gentle but comprehensive course to rendering!

Let me begin by talking about value and say that to get this quality and depth for this topic, you'd almost certainly end up paying for a course at a college that would charge you much much more than what pay for here.

I've tried Udemy courses and I've tried books, but this is the course that I finally got through and really digested 3D rendering and math.

Speaking of math... there's plenty, it'd be a lie to not say that, but everything is explained step by step, and is broken down into understandable pieces. I would argue that what math is used, and how well it's presented, if you made it out of high school with some trigonometry, you should be able to take on what's in this course.

I do think an introduction to programming in C might be in order for a lot of folks, but that's not too burdensome. After completing this I've gained so much insight into how everything works in 3D, whether it's Blender, video games, or the GPU pipeline.

If you are looking to really comprehend how 3D works under the hood, I feel comfortable saying this is the best bang for your buck."
12 May 2024

Other similar courses

C++ 2D Game Engine Development

30 hours
  • Learn to make a simple 2D game engine using modern C++, SDL, ECS, and Lua.
raycasting texture c

Raycasting Engine Programming with C

18 hours
  • Write a raycasting engine with textures and sprites using the C programming language.

Game Physics Engine Programming

35 hours
  • Learn how to create a 2D rigid-body game physics engine from scratch with C++.